Transience of percolation clusters on wedges

نویسندگان

  • Omer Angel
  • Itai Benjamini
  • Yuval Peres
چکیده

We study random walks on supercritical percolation clusters on wedges in Z, and show that the infinite percolation cluster is (a.s.) transient whenever the wedge is transient. This solves a question raised by O. Häggström and E. Mossel. We also show that for convex gauge functions satisfying a mild regularity condition, the existence of a finite energy flow on Z is equivalent to the (a.s.) existence of a finite energy flow on the supercritical percolation cluster. This answers a question of C. Hoffman

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

conformal invariance : Two - dimensional clusters grafted to wedges , cones , and branch points of Riemann surfaces

Lattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of 2-d site animals on square and triangular lattices in non-trivial geometries. The simulations are done with the newly developed PERM algorithm which gives very precise estimates of the partition sum, yielding precise values for the entropic exponent θ (ZN ∼ ...

متن کامل

Transience, Recurrence and Critical Behavior for Long-Range Percolation

We study the behavior of the random walk on the infinite cluster of independent long range percolation in dimensions d = 1, 2, where x and y are connected with probability ∼ β/‖x − y‖−s. We show that when d < s < 2d the walk is transient, and when s ≥ 2d, the walk is recurrent. The proof of transience is based on a renormalization argument. As a corollary of this renormalization argument, we ge...

متن کامل

Quantitative noise sensitivity and exceptional times for percolation

One goal of this paper is to prove that dynamical critical site percolation on the planar triangular lattice has exceptional times at which percolation occurs. In doing so, new quantitative noise sensitivity results for percolation are obtained. The latter is based on a novel method for controlling the “level k” Fourier coefficients via the construction of a randomized algorithm which looks at ...

متن کامل

Violating conformal invariance: two-dimensional clusters grafted to wedges, cones, and branch points of Riemann surfaces.

Lattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of two-dimensional site animals on square and triangular lattices in nontrivial geometries. The simulations are done with the pruned-enriched Rosenbluth method (PERM) algorithm, which gives very precise estimates of the partition sum, yielding precise values fo...

متن کامل

Percolation Perturbations in Potential Theory and Random Walks We Recall Some Deenitions. given a Graph G = Yx F(y)= Deg G X for All X 2 V

We show that on a Cayley graph of a nonamenable group, a.s. the innnite clusters of Bernoulli percolation are transient for simple random walk, that simple random walk on these clusters has positive speed, and that these clusters admit bounded harmonic functions. A principal new nding on which these results are based is that such clusters admit invariant random subgraphs with positive isoperime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001